Synthese, Struktur und Reaktionen von 1,2,3,6-Tetrahydro-1,2,3,6-diphosphadiborin-Derivaten

Matthias Drieß, Hans Pritzkow und Walter Siebert*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg

Eingegangen am 13. Oktober 1988

Keywords: Tetracarbonylchromium complexes / 1,2,3,6-Tetrahydro-1,2,3,6-diphosphadiborine derivatives

Die 1,2,3,6-Tetrahydro-1,2,3,6-diphosphadiborin-Derivate 3a und 3b entstehen durch Cyclokondensation aus 1,2-Bis[chlor(dialkylamino)boryl]ethenen 2 und 1,2-Dikalium-1,2-di-*tert*-butyldiphosphandiid. Die Temperaturabhängigkeit der ¹H-NMR-Spektren von 3b dokumentiert wie bei 2,5-Dihydro-1*H*-1,2,5-phosphadiborol-Derivaten 1 eine erniedrigte Phosphor-Inversionsbarriere. Die Röntgenstrukturanalyse von 3b zeigt, daß der C₂B₂P₂-Sechsring im Kristall nicht eben ist und daß die P-Atome pyramidal koordiniert sind. Versuche zur Substitution der Dialkylaminogruppen an den Boratomen von 3a und 3b mit HCl \cdot Et₂O oder *t*BuLi führen zur Spaltung der B – P-Bindungen. Die Umsetzung von 3a bzw. 3b mit Cr(CO)₃(MeCN)₃ ergibt keine Tricarbonylchrom-Komplexe, sondern die Tetracarbonylchrom-Komplexe 6a bzw. 6b, in denen die Liganden 3a und 3b pentahapto gebunden sind.

Im Gegensatz zu Triorganophosphanen oder PH₃ besitzen Vertreter des 2,5-Dihydro-1*H*-1,2,5-phosphadiborols 1¹) erniedrigte Inversionsbarrieren am pyramidal koordinierten λ^3 -P-Atom infolge von stabilisierenden Bor-Phosphor- π -Wechselwirkungen im Übergangszustand (planar koordiniertes λ^3 -P-Atom)^{1,2}). Dieser Befund wird durch ab-initiound MNDO-MO-Berechnungen gestützt³).

Im Rahmen unserer Untersuchungen zur Darstellung von BP-Heterocyclen mit dem 1,2-Diborylethen-Inkrement B-CH=CH-B berichten wir nachfolgend über Synthese, Struktur und Reaktionen der ersten 1,2,3,6-Tetrahydro-1,2,3,6-diphosphadiborin-Derivate **3a** und **3b**. Das Dimere von **3** mit Chlorsubstituenten an den Boratomen besitzt ein neuartiges Bor-Phosphor-Kohlenstoff-Käfiggerüst⁴⁾. Monomere 1,2,3,6-Tetrahydro-1,2,3,6-diphosphadiborine **3**, die zur elektronischen Stabilisierung Dialkylamino-Substituen-

Synthesis, Structure, and Reactions of 1,2,3,6-Tetrahydro-1,2,3,6diphosphadiborine Derivatives

The 1,2,3,6-tetrahydro-1,2,3,6-diphosphadiborine derivatives 3a and 3b are obtained by cyclocondensation of 1,2-bis[chloro(dialkylamino)boryl]ethenes 2 and 1,2-dipotassium 1,2-di-*tert*-butyldiphosphanediide. As in the case of 2,5-dihydro-1*H*-1,2,5-phosphadiborole derivatives 1 the temperature-dependent ¹H-NMR spectra of 3b exhibit a lowered barrier of inversion at phosphorus. The X-ray structure analysis of 3b shows, that the six-membered $C_2B_2P_2$ ring is nonplanar and the P atoms are coordinated pyramidally. Attempts to substitute the dialkylamino groups at the boron atoms of 3a and 3b with HCl \cdot Et₂O or *t*BuLi lead to cleavage of the B-P bonds. Reaction between 3a or 3b and Cr(CO)₃(MeCN)₃ does not result in the formation of tricarbonylchromium complexes but of tetracarbonylchromium complexes 6a and 6b with pentahapto-bonded ligands 3a and 3b.

ten an den B-Atomen aufweisen, interessieren wegen ihres potentiell heteroaromatischen Elektronensystems. Sie sind isovalenzelektronisch mit Borazinen⁵⁾, 1,2,3,6-Tetrahydro-1,2,3,6-diazadiborinen⁶⁾ und dem ersten 1,3,5,2,4,6-Triphosphatriborin-Vertreter⁷⁾.

Darstellung und Eigenschaften von 3a, b

Die Verbindungen 3a und 3b sind analog zur Herstellung von 1 durch Cyclokondensation aus 2 und 1,2-Dikalium-1,2-di-tert-butyldiphosphandiid in guten Ausbeuten erhältlich. Für die Bildung von **3a**, **b** ist die sterische Abschirmung der P-P-Bindung durch die sperrigen tert-Butylgruppen notwendig, da entsprechende Umsetzungen von 2 mit 1,2-Dikalium-1,2-diphenyldiphosphandiid zu 1 und oligomerem "Phenylphosphor" $(C_6H_5P)_n$ führen². **3a** und **3b** sind leuchtend gelb, in aprotischen unpolaren Solventien gut löslich und gegenüber Sauerstoff und Feuchtigkeit nur mäßig empfindlich. Sie können ohne Zersetzung auf ca. 160°C erhitzt werden. Ihre Zusammensetzung ergibt sich aus den Massenspektren sowie den Elementaranalysen, die Konstitution der $C_2B_2P_2$ -Derivate wird aus den ¹H-, ¹³C-, ¹¹B- und ³¹P-NMR-Spektren abgeleitet. Im Falle von 3b liegt eine Röntgenstrukturanalyse als Konstitutionsbeweis vor.

Bei der Darstellung von **3a** entsteht als Nebenprodukt mit bis zu 6% Ausbeute 1,4-Bis(dimethylamino)-1,4-dibora-2,5-cyclohexadien (4), das durch fraktionierende Sublimation aus dem Rohprodukt analysenrein erhalten wird. Andere 1,4-Dibora-2,5-cyclohexadien-Derivate mit Fluor-^{8a}) Methoxy- und Ferrocenyl-Substituenten^{8b)} am Bor sind schon länger bekannt.

Wir nehmen an, daß die Bildung von 4 über entsprechend substituierte Boriren-Intermediate und deren [3+3]-Cy-cloaddition verläuft.

NMR-Spektren von 3a, b

^{*I*}*H-NMR-Spektren:* Die δ -Werte der *tert*-Butylprotonen von **3a** (0.71) und **3b** (1.48), die jeweils Triplettsignale zeigen, sind signifikant verschieden. Die Diphosphan-Einheit (*t*BuP)₂ zwischen den Boratomen bedingt chemisch, aber nicht magnetisch, äquivalente olefinische Protonen, die durch ³*J*(PH)- und ⁴*J*(PH)-Kopplungen ebenfalls Triplettsignale ergeben. Aufgrund der gehinderten Rotation um die BN-Bindung weisen **3a**, **b** paarweise anisochrone Methylprotonen (**3a**: ein Singulett- und ein Triplettsignal) bzw. Isopropylprotonen (**3b**: zwei Septettsignale für die α -Protonen) der Dialkylaminogruppen auf (Tab. 1).

¹H/¹H-Doppelresonanzexperimente sichern die Zuordnung des tieffeldverlagerten Septettsignals in **3b** ($\delta = 5.52$) zum hochfeldliegenden Dubletsignal (β -Protonen der Isopropylgruppen: $\delta = 1.03$). Die Linienverbreiterung des Resonanzsignals der β -Isopropylprotonen bei $\delta = 1.03$ (+24°C) gegenüber dem anderen Dublettsignal bei $\delta = 1.29$ läßt sich (wie Aufnahmen von temperaturabhängigen ¹H-NMR-Spektren von **3b** zeigen) auf die Inversion der P-Atomen zurückführen.

Tab. 1. δ¹H-NMR-Daten und J(PH)-Kopplungskonstanten [Hz] von 3a, b

	=CH	N-CH	NCCH ₃	C(CH ₃) ₃
3a	6.47 (t, 2) ^{a)}	2.48 (t, 6) ^{b)} 2.01 (s, 6)	_	0.71 (t, 18) ^{c)}
3b	7.38 (t, 2) ^{d)}	5.52 (sept, 2) ${}^{3}J(HH) = 6.2$	1.03 (d, 12)	1.48 (t, 18) ^{e)}
		${}^{3}J(\text{HH}) = 6.2$	1.29 (d, 12)	

^{a) 3} $J(PH) + {}^{4}J(PH) = 4.2. - {}^{b) 4}J(PH) + {}^{5}J(PH) \approx 0.9. - {}^{c) 3}J(PH) + {}^{4}J(PH) = 12.0. - {}^{d) 3}J(PH) = {}^{4}J(PH) = 5.8. - {}^{c) 3}J(PH) + {}^{4}J(PH) = 12.6.$

Wie im Falle von 1 ($\mathbf{R} = i\mathbf{Pr}^{1,2}$) wird auf Grund der Temperaturabhängigkeit der ¹H-NMR-Spektren eine erniedrigte Inversionsbarriere angenommen. Bei tiefen Temperaturen erzeugt die starre pyramidale Konfiguration beider P-Atome Diastereotopie aller vier Methylgruppen (β -Protonen) einer Diisopropylaminogruppe, während bei höherer Temperatur wegen der raschen P-Inversion im zeitlichen Mittel nur zwei anisochrone Sätze von Methylgruppen beobachtet werden. Die rasche Inversion der P-Atome bei Raumtemperatur in Lösung wird vermutlich durch bindende BP- π -Wechselwirkungen im planaren Übergangszustand ermöglicht.

Berechnungen der Orbitalzustände (MNDO-Methode^{3a)}) von hypothetischen planaren 1,2,3,6-Tetrahydro-1,2,3,6diphosphadiborinen des Typs $(HC)_2(BR')_2(PH)_2$ $(R' = NH_2,$ Cl, Me, H) ergaben, daß die HOMOs in Abhängigkeit vom Bor-Substituenten (NH₂ < Cl < H < Me) zunehmenden $\pi(P = B)$ -Charakter mit dominierendem P-Orbitalbeitrag besitzen. Diese Abstufung erklärt sich aus dem unterschiedlichen π -Donorvermögen von NH₂ und Cl (NH₂ > Cl) im Gegensatz zu den Substituenten Me und H. Schwächere π -Donoren als die Aminogruppe sollten daher eine zusätzliche Erniedrigung der Phosphorinversionsbarriere im C₂B₂P₂-Ringsystem bewirken und damit eine stärkere BP- π -Wechselwirkung ermöglichen. Die HOMO-Zustände entsprechen im wesentlichen am Phosphor lokalisierten n-Orbitalen. Wie bei acyclischen 1,2-Di-tert-butyldiphosphanen⁹⁾ sind die Konformationen bevorzugt, in denen die sterisch anspruchsvollen tert-Butylgruppen anti-Stellung und die lone-pair-Orbitale gauche-Lage einnehmen. Unabhängig von dem Befund, daß die dynamischen Effekte der P-Inversion bei 3a ¹H-NMR-spektroskopisch nicht beobachtbar sind, ist hier das gleiche Verhalten anzunehmen. Ähnliche dynamische Effekte am Phosphor wurden bei dem monomeren CB₂P₂-Diphosphan-Heterocyclus 3,5-Bis(diisopropylamino)-1,2-diphenyl-1,2,3,5-diphosphadiborolan¹⁰ beobachtet.

¹³C-NMR-Spektren: Die Zuordnung der Resonanzlinien in den ¹³C{¹H}-NMR-Spektren von 3a und 3b geschieht mit Hilfe der ¹³C-off-resonance- und DEPT-NMR-Spektren (Tab. 2). In **3a** finden sich für die Methyl-¹³C-Kerne der tert-Butylgruppen ein intensitätsstarkes Triplettsignal $\int^2 J(PCC)$ und ³J(PPCC)-Kopplungen], wohingegen die quartären C-Atome am Phosphor Singulettsignale ergeben. Nimmt man wie bei Alkenen die Relation |J(E)| > |J(Z)| für die Kopplungskonstanten ${}^{3}J(PC)$ an, so läßt sich eine Zuordnung (E) bzw. (Z) der Methyl-C-Atome der NMe₂-Gruppen bezüglich der BN- π -Bindung vornehmen. Für die (E)-Methyl-Gruppe liegt ein Triplettsignal bei $\delta = 44.17$ vor, während die (Z)isomeren Methyl-C-Atome bei $\delta = 39.75$ ein Singulett ergeben. Die Ring-13C-Atome zeigen sowohl für 3a als auch für 3b ein ¹¹B-relaxationsverbreitertes Signal, dessen δ-Wert im Vergleich zu den C₂B₂P₂-Verbindungen 1 um etwa 10 ppm verringert ist, d. h. sie sind magnetisch stärker abgeschirmt. Auch bei anderen Sechsringen wird eine größere

Tab. 2. δ¹³C-NMR-Daten und J(PC)-Kopplungskonstanten [Hz] von **3a**, **3b**; in C₆D₆ gegen TMS extern, ¹H-entkoppelt

	=CB	NC	NCCH ₃	PC	PCCH ₃
3a	149 (br)	44.17 (t) ^{a)} 39.75 (s)		30.01	32.99 (t) ^{b)}
3 b	149 (br)	54.05 (t) ^{c)} 46.11 (s)	25 (br) 21.42 (s)	30.00 (s)	33.47 (t) ^{d)}
$\frac{a^{3} J}{d^{2}J} =$	$+ {}^{4}J = 27.2$ $- {}^{3}J = 18.1$	$2 b)^2 J + 3$	J = 19.3	$^{c)}{}^{3}J + {}^{4}J$	= 37.6. –

Abschirmung der Ring-¹³C-Kerne gegenüber Fünfringen beobachtet¹¹⁾.

Das ¹³C{¹H}-NMR-Spektrum von **3b** stimmt für die *tert*-Butyl-C-Atome und die α -C-Atome der Diisopropylaminogruppen mit **3a** überein. Die zwei Singuletts für die anisochronen β -C-Atome der N(*i*Pr)₂-Gruppen sind bei + 24 °C wegen der dynamischen Effekte der P-Inversion (siehe ¹H-NMR-Spektren) verbreitert. Bei Temperaturerhöhung auf + 60 °C zeigen sich zwei scharfe Singulettsignale, während bei tiefer Temperatur vier anisochrone Sätze auftreten.

¹⁷B- und ³¹P-NMR-Spektren: Die δ^{11} B-Werte für **3a** (40.5, $h_{1,2} = 280$ Hz) und **3b** (41.5, $h_{1,2} = 338$ Hz) zeigen eine größere Abschirmung (Hochfeldshift) der ¹¹B-Kerne im Vergleich zu Derivaten von 1, deren δ^{11} B-Werte zwischen 47 und 50 liegen^{1,2)}. Dies wurde auch in ähnlichen Fällen^{11,12)} bei einer Winkelaufweitung am Boratom in Sechsringen gegenüber Fünfringen beobachtet.

In den ³¹P-NMR-Spektren ist die ¹¹B-Quadrupolverbreiterung der Resonanzen weniger stark ausgeprägt als bei den Derivaten von 1. Das Resonanzsignal von **3a** ($\delta^{31}P = -92.8$) ist im Vergleich zu **3b** ($\delta^{31}P = -77.4$) merklich zu höherem Feld verlagert.

Röntgenstrukturanalyse von 3b

Die Indizien für eine nicht-planare Koordination der λ^3 -P-Atome aus der Temperaturabhängigkeit der ¹H- und ¹³C-NMR-Spektren von **3b** werden durch die Röntgenbeugungsanalyse für den Festzustand bestätigt. Abb. 1 zeigt die Molekülstruktur. Der Ring ist nicht eben, und die P-Atome sind pyramidal koordiniert, wobei die *tert*-Butylgruppen *anti*-Stellung einnehmen (Torsionswinkel C2 – P – P' – C2' 174°).

Abb. 1. Molekülstruktur von 3b

Das Molekül besitzt eine kristallographisch bedingte zweizählige Achse, die durch die Mittelpunkte der C=Cund P-P-Bindungen verläuft. Durch die Lage der tert-Butylgruppen zueinander werden abstoßende Wechselwirkungen vermieden. Die Boratome sind trigonal planar (sp²) koordiniert. Gegenüber dem BN-Einfachbindungsabstand von 1.56-1.60 Å ist die BN-Bindung in **3b** durch π -Wechselwirkung signifikant verkürzt $\lceil d(B-N) = 1.42 \text{ Å} \rceil$.

Die Bindungsabstände im Ring stimmen gut mit den in 1^{11} gefundenen Werten überein. Der P-P- und der B-P-

Bindungsabstand liegen innerhalb der normalen Bindungslängen für Diphosphane¹³⁾ und monomere Phosphinoborane^{14,15)}. Bei einer BP- π -Bindung mit λ^3 -Bor- und λ^3 -Phosphoratomen sollte wie bei dem planaren 1,3,5,2,4,6-Triphosphatriborin^{7,15)} der BP-Abstand um 0.1–0.2 Å gegenüber einer BP-Einfachbindung (1.95–1.98 Å) verkürzt sein. Aus elektronischen Gründen (effektive BN- π -Überlappung) ist eine BP- π -Wechselwirkung im Grundzustand von **3b** nicht zu erwarten.

Tab. 3. Atomparameter für $[P(C_4H_9)BN(C_3H_7)_2CH]_2$ (3b); \bar{u} ist definiert als ein Drittel der Spur des orthogonalisierten U-Tensors

Atom	x	У	z	ū
P	0.02584(8)	0.16142(11)	0.30344(3)	0.032
в	0.0960(4)	0.4049(4)	0.32685(14)	0.033
C1	0.0417(3)	0.5672(4)	0.28044(13)	0.039
C2	-0.1722(3)	0.1492(4)	0.32537(13)	0.041
С3	-0.2809(4)	0.2964(6)	0.29504(19)	0.067
C4	-0.1501(4)	0.1620(6)	0.39869(16)	0.066
С5	-0.2398(4)	-0.0339(6)	0.3031(2)	0.084
N	0.2060(3)	0.4293(3)	0.38477(11)	0.036
C6	0.2559(3)	0.2774(4)	0.43045(14)	0.045
C7	0.2358(5)	0.3164(6)	0.50032(16)	0.066
C8	0.4171(4)	0.2170(5)	0.42749(18)	0.060
С9	0.2909(4)	0.5968(4)	0.40486(14)	0.045
C10	0.3816(4)	0.6604(5)	0.35466(19)	0.067
C11	0.1914(5)	0.7414(5)	0.42685(18)	0.067

Tab. 4. Abstände [Å] und Winkel [Å] für $[P(C_4H_9)BN(C_3H_7)_2CH]_2$ (3b)

P - P' = 2.187(1)	P - B = 1.957 (3)
P-C2 1.911 (3)	B - C1 = 1.570(4)
B - N = 1.415(3)	C1 - C1' = 1.343(5)
N-C6 1.494 (4)	N - C9 = 1.482 (4)
$C1 - H1 \ 0.98 \ (3)$	
P' - P - B = 104.4 (1)	P' - P - C2 = 102.6 (1)
P' - P - C2 = 102.6 (1)	C2 - P - B = 104.6 (1)
C1 - B - P 121.3 (1)	N - B - P 118.0 (2)
N-B-C1 120.5 (2)	C9 - N - C6 112.8 (2)
C6 - N - B 121.3 (2)	C9 - N - B 125.7 (2)
B - C1 - C1' 129.2 (2)	H1 - C1 - C1'117.6(19)
$H1 = C1 = B \cdot 117.6 \cdot (18)$, , , , , , , , , , , , , , , , , , ,

Reaktionen von 3a und 3b

Substitution der Dialkylamio-Gruppen in 3: Die Umsetzung von 3a mit vier Äquivalenten HCl analog zu bekannten Reaktionen⁵⁾ erfolgte in Ether bei -78 °C. Nach der Aufarbeitung bei Raumtemperatur läßt sich als einziges definiertes Produkt 1,2-Di-tert-butyldiphosphan ³¹P-NMRspektroskopisch identifizieren [$\delta^{31}P = -62.0$ (d,l-Form), -60.8 (meso-Form)⁹⁾]. Daß bei dieser Reaktion kein Dibo-

$$3a,b \xrightarrow{2 \text{ Me}_{3}\text{ CLi}}_{-(\text{Me}_{3}\text{ CPLi})_{2}} \qquad \begin{array}{c} H \\ R_{2}N - B \\ C = C \\ Me_{3} \\ Me_{3} \\ Me_{3} \\ \end{array}$$

rylethen-Derivat 2 als Ringspaltungsprodukt gefunden werden konnte, weist auf einen unübersichtlichen Reaktionsverlauf mit Spaltung von BC-Bindungen hin.

Die Umsetzungen von 3 mit tBuLi wurden bei 0° C in Hexan als Solvens durchgeführt. Nach Zugabe der gesamten tBuLi-Menge in Hexan (zwei Äquivalente) wird zunächst eine klare Lösung erhalten, die im ¹¹B-NMR-Spektrum ein breites Signal bei $\delta \approx -0.3$ (neben den Eduktpeaks von **3a** bzw. 3b) zeigt. Aus dieser Lösung scheidet sich innerhalb von 20 Minuten ein orangefarbener Niederschlag ab, der isoliert und zur Charakterisierung mit Me₃SiCl bei -10°C umgesetzt wird. Es entsteht ein öliges Rohprodukt, das laut ¹H- und ³¹P-NMR-Spektrum 1,2-Di-tert-butyl-1,2-bis(trimethylsilyl)diphosphan enthält. Als borhaltige Komponenten der Umsetzungen von 3a und 3b mit tBuLi werden 5a (47% Ausbeute) und 5b (44%) als sauerstoff- und wasserempfindliche Flüssigkeiten isoliert. Die Verbindungen sind massenspektrometrisch und ¹H- sowie ¹¹B-NMR-spektroskopisch charakterisiert. Die Umsetzungen zeigen, daß die Spaltung der BP-Bindungen und keine Substitution von NR₂ erfolgt.

Komplexierung von 3a und 3b mit $Cr(CO)_3(MeCN)_3$: 3a, b sind isoelektronisch mit den π^6 -Liganden 1,2,3,6-Tetrahydro-1,2,3,6-diazadiborin⁶⁾ und Hexamethyl-1,3,5-borazin⁵⁾, die mit Tris(acetonitril)tricarbonylchrom Tricarbonylchrom-Komplexe bilden^{6,16)}. Die analogen Umsetzungen von 3a, b ergeben jedoch nicht die Cr(CO)₃-, sondern die Cr(CO)₄-Komplexe 6a und 6b, deren Charakterisierung durch Massenspektren, Elementaranalyse, IR- und NMR-Spektren erfolgte.

Erhitzen der orangegelben kristallinen Verbindungen **6a** und **6b** im Vakuum (10⁻³ Torr) ohne Solvens oder in einem hochsiedenden Lösungsmittel (Mesitylen, Diglyme) führt zu nicht charakterisierten Zersetzungsprodukten. Auch durch UV-Bestrahlung im polaren (CH₂Cl₂) wie unpolaren Medium (Pentan) gelingt die Bildung der Cr(CO)₃-Komplexe nicht. In **6a** und **6b** ist das Cr(CO)₄-Fragment pentahapto an die Liganden **3a** und **3b** gebunden. Diese Anordnung geht aus den ¹H-, ¹³C- und ³¹P-NMR-Spektren sowie insbesondere aus den $\Delta\delta^{11}$ B-Daten (**6a**: -8.5, **6b**: -7.5) hervor.

Die relative Hochfeldwanderung der δ^{11} B-Signale (**6a**: 32.0; **6b**: 34.0) in den Verbindungen **6a**, **b** signalisiert Bor-Chrom-Wechselwirkungen in den Molekülen. Für (η^6 -Borazin)tricarbonylchrom¹⁶⁾ und Tricarbonyl(η^6 -1,2,3,6-diazadiborin)chrom-Komplexe⁶⁾ werden vergleichbare Hochfeldverschiebungen der δ^{11} B-Signale gefunden.

Im Falle einer Hexahapto-Koordination des Cr(CO)₃-Fragments müssen die beiden *tert*-Butylgruppen syn-Stellung einnehmen. Dies würde zu einer erheblichen Abstoßung zwischen den sperrigen *tert*-Butylgruppen führen, was als Ursache für das bisherige Mißlingen der Synthese des Komplextyps $Cr(CO)_3 \cdot 3$ angesehen wird.

Tab. 5. δ^{t} H-NMR-Daten der Komplexe **6a**, **b**; in C₆D₆ (+24°C), gegen TMS extern, J in Hz

	= CH	NCH	NCCH ₃ (d, 3)	<i>t</i> Bu (d, 9)
6a	4.40 (dd, 1) ${}^{3}J_{HH} = 14.6$ ${}^{3}J_{PH} = 25.0$ 3.82 (dd, 1) ${}^{3}J_{HH} = 14.6$, ${}^{4}J_{PH} = 4.1$	2.99 (s, 3) 2.70 (s, 3) 2.64 (s, 3) 2.59 (s, 3)	_	${}^{1.19}_{}^{}_{}^{}_{J_{PH}} = 16.7$ ${}^{1.01}_{}^{}_{}^{}_{J_{PH}} = 11.7$
6 b	4.97 (dd, 1) $J_{HH} = 14.0$ ${}^{3}J_{PH} = 27.0$ 4.15 (dd, 1) $J_{HH} = 14.0$ ${}^{4}J_{PH} = 6.0$	4.75 (dsept, 1) $J_{HH} = 4.8$ ${}^{4}J_{PH} = 3.6$ 3.64 (sept, 1) $J_{HH} = 6.4$ 3.31 (dsept, 1) $J_{HH} = 7.0$ ${}^{4}J_{PH} = 3.4$ 3.11 (dsept, 1) $J_{HH} = 6.7$ ${}^{4}J_{PH} = 2.4$	1.63 1.45 1.30 1.28 1.18 1.10 1.01 0.91	${}^{1.26}_{{}^{3}J_{\rm PH}} = 16.2$ 1.17 ${}^{3}J_{\rm PH} = 11$

Tab. 6. δ^{13} C-NMR-Daten von **6a**, **b**; in C₆D₆, J in Hz

	NC	NCCH ₃	CCH ₃	CCH ₃
6a ^{a)}	44.39 (d ${}^{3}J_{PC} = 3.7$ 43.76 (dd) ${}^{3}J_{PC} = 25.8$ ${}^{4}J_{PC} = 3.4$ 38.90 (d) ${}^{3}J_{PC} = 4.3$ 38.72 (d) ${}^{3}J_{PC} = 5.7$	_	32.95 32.44 32.33 32.20 Zuordnung und J nicht eindeutig	$32.97 \text{ (dd)} {}^{2}J_{PC} = 13.8 {}^{3}J_{PC} = 4.1 30.04 \text{ (t)} {}^{2}J_{PC} + {}^{3}J_{PC} = 8.0 $
6 b ^{b)}	56.65 (d) ${}^{3}J_{PC} = 6.2$ 54.64 (d) ${}^{3}J_{PC} = 30.2$ ${}^{4}J_{PC} = 5.7$ 46.25 (d) ${}^{3}J_{PC} = 3.5$ 45.64 (d) ${}^{3}J_{PC} = 5.5$	24.78 (s) 24.30 (s) 23.77 (s) 22.27 (s) 23.61 (s) 22.34 (s) 21.97 (s) 20.38 (s)	32.38 (dd) ${}^{1}J_{PC} = 21.1$ ${}^{2}J_{PC} = 9.4$ 31.88 ("t") ${}^{1}J_{PC} +$ ${}^{2}J_{PC} = 10.3$	33.64 (dd) ${}^{2}J_{PC} = 11.8$ ${}^{3}J_{PC} = 3.0$ 30.30 (t) ${}^{2}J_{PC} +$ ${}^{3}J_{PC} = 8.5$

^{a)} $\delta(BC) = 86$ (br); 82 (br). $\delta(CO) = 234.38$ (d), $J_{PC} = 11.9$; 227.15 (d), $J_{PC} = 2.6$; 226.59 (dd), $J_{PC} = 17.6$, $J_{PC} = 3$; 225.43 (d), $J_{PC} = 3.3$ Hz. – ^{b)} $\delta(BC)$ nicht gefunden. $\delta(CO) = 233.88$ (d), $J_{PC} = 11.4$; 227.90 (d), $J_{PC} = 2.6$; 227.10 (dd), $J_{PC} = 15.5$, $J_{PC} = 5.2$ Hz; 223.51 (d), $J_{PC} = 3.3$.

Tab. 7. $\delta^{31}P\text{-}NMR\text{-}Daten$ von **6a, b**; in C_6D_6 (+24 °C), gegen 85proz. H_3PO_4 extern

6a	$P_B = -60.75$ (d), $P_A = -28.05$ (d)	$J(P_AP_B) = 278.8 \text{ Hz}, h_{1/2} \approx 150 \text{ Hz}$
6b	$P_B = -46.80 (d)$ $P_A = -27.7 (d)$	$J(P_A P_B) = 295.8 \text{ Hz}, h_{1/2} \approx 68 \text{ Hz}$

Die IR-Spektren (Pentan) von **6a** und **6b** zeigen im v(CO)-Bereich jeweils vier Absorptionsbanden (**6a**: 2011 cm⁻¹, 1942, 1924 und 1902; **6b**: 2013, 1942, 1924 und 1905) entsprechend der zu erwartenden lokalen $C_{2\nu}$ -Symmetrie des Cr(CO)₄-Fragments.

Mit Hilfe der DCI-Massenspektren werden im Unterschied zu den EI-Massenspektren für **6a** und **6b** die Molekülpeaks mit geringer relativer Intensität erkennbar (siehe Exp. Teil). Als Fragmentierungen beobachtet man im oberen Massenbereich überwiegend CO-Abspaltungen.

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der BASF Aktiengesellschaft für die Förderung dieser Arbeit.

Experimenteller Teil

NMR-Spektren (C₆D₆): Bruker AC 200 (¹H, ¹³C), Jeol-FX-90 (¹¹B, ³¹P); Standard: TMS (extern), Et₂O · BF₃ (extern), 85% H₃PO₄ (extern). – IR-Spektren: Perkin-Elmer 710 B. – Massenspektren: Varian MAT CH7, 70 eV. – Alle Untersuchungen wurden unter Ausschluß von Wasser und Luft durchgeführt. Als Inertgas wurde N₂ verwendet. – Schmelzpunkte, unkorrigiert: Schmelzpunktapparatur nach Dr. Tottoli. – Nach Literaturangaben wurden dargestellt: $(CH)_2[B(NiPr_2)Cl]_2$ (2b)^{17a}, $(CH)_2[B(NMe_2)Cl]_2$ (2a)^{17b}, $(tBuP)_2K_2 \cdot 0.5$ THF¹⁸, Cr(CO)₃(MeCN)₃¹⁹.

1,2-Di-tert-butyl-3,6-bis(dimethylamino)-1,2,3,6-tetrahydro-1,2,3,6-diphosphadiborin (3a) und 1,2-Di-tert-butyl-3,6-bis(diisopropylamino)-1,2,3,6-tetrahydro-1,2,3,6-diphosphadiborin (3b): Zur schnell gerührten Suspension von 2.90 g (10 mmol) (tBuP)₂K₂. 0.5 THF in 50 ml Petrolether (40-60°C) werden bei -30°C langsam 2.02 g (9.8 mmol) 2a als Lösung in Petrolether getropft. Anschließend wird auf 0°C erwärmt und 2 h gerührt. Die erhaltene grüne Suspension wird über eine G3-Fritte filtriert und die klare hellgelbe Lösung i. Vak. eingeengt. 3a wird verunreinigt mit dem Organoboran 4 als festes Rohprodukt erhalten. Man sublimiert 4 bei 40°C/5 · 10⁻¹ Torr ab und kristallisiert den Rückstand aus Pentan oder Toluol (-30°C) um. 3a wird in Form hellgelber Kristalle erhalten: 2.00 g (6.41 mmol, 65.5%), Schmp. 149-150 °C. -MS (EI): m/z (%) = 312 (M⁺, 13), 268 ([M - NMe₂]⁺, 8), 255 $([M - tBu]^+, 40), 223 ([M - (PHtBu)]^+, 18), 57 (tBu^+, 100).$ C₁₄H₃₂B₂N₂P₂ (312.0) Ber. C 53.91 H 10.34 N 8.98 P 19.87

 $_{4}H_{32}B_{2}N_{2}P_{2}$ (312.0) Ber. C 53.91 H 10.34 N 8.98 P 19.87 Gef. C 54.05 H 10.40 N 9.00 P 19.80

Die Darstellung von **3b** erfolgt analog. Aus 1.8 g (5.64 mmol) **2b** und 2.0 g (6.88 mmol) $(tBuP)_2K_2 \cdot 0.5$ THF erhält man **3b** in Form gelber Kristalle: 1.64 g (3.86 mmol, 70%), Schmp. 186–187°C. – MS (EI): m/z (%) = 424 (M⁺, 23), 381 ([M - *i*Pr]⁺, 4), 367 ([M $tBu]^+$, 100), 335 ([M - PH - $tBu]^+$, 34), 311 ([M - tBu - $C_4H_8]^+$, 32), 293 ([M - PH - $tBu - C_3H_6]^+$, 6), 57 (tBu^+ , 66), 43 (*i*Pr⁺, 76).

 $\begin{array}{c} C_{22}H_{48}B_2N_2P_2 \ (424.2) \\ \text{Gef. C } 62.30 \ \text{H} \ 11.41 \ \text{N} \ 6.60 \ \text{P} \ 14.62 \\ \text{Gef. C } 62.07 \ \text{H} \ 11.30 \ \text{N} \ 6.39 \ \text{P} \ 14.46 \end{array}$

4 bildet farblose hygroskopische Nadeln, Schmp. 84–86°C, 180 mg (1.11 mmol). – ¹H-NMR (20°C, 90 MHz): $\delta = 2.33$ (s, 12H, NCH₃); 6.46 (s, 4H, =CH). – ¹¹B-NMR: $\delta = 38.6$. – MS (EI): m/z (%) = 162 (M⁺, 100), 118 ([M – NMe₂]⁺, 26), 103 ([M – NMe₂ – Me]⁺, 8), 81 (M⁺/2, 10), 44 (NMe⁺₂, 58).

 $\begin{array}{c} C_8 H_{16} B_2 N_2 \ (161.8) & \mbox{Ber. C } 59.38 \ \mbox{H } 9.97 \ \mbox{N } 17.31 \\ & \mbox{Gef. C } 59.26 \ \mbox{H } 9.93 \ \mbox{N } 17.24 \end{array}$

(Z)-1,2-Bis[tert-butyl(dimethylamino)boryl]ethen (5a) und (Z)-1,2-Bis[tert-butyl(diisopropylamino)boryl]ethen (5b): Die Lösung

von 930 mg (2.97 mmol) 3a in ca. 30 ml Hexan wird bei 0°C mit 380 mg (5.94 mmol) tBuLi (1.35 м Lösung in Hexan) versetzt. Nach etwa 10 min läßt man die Reaktionsmischung (¹¹B-NMR: δ = -0.3) auf Raumtemp. erwärmen, wobei sich aus der klaren gelben Lösung ein orangefarbener Niederschlag abscheidet. Nach 2 h wird der Niederschlag abfiltriert, mit Pentan gewaschen und i. Vak. getrocknet (Di-tert-butyldilithiodiphosphan, 360 mg, 1.89 mmol, 64%). Durch Umsetzung des in THF suspendierten Feststoffs mit Me₃SiCl im Überschuß erhält man 1,2-Di-tert-butyl-1,2-bis(trimethylsilyl)diphosphan mit ca. 95% Ausbeute (1H- und 31P-NMRspektroskopisch). Das Filtrat wird i. Vak. vom Solvens befreit und bei 73-78°C/10⁻² Torr destilliert. Ausb. 350 mg (1.4 mmol, 47%) 5a als farblose, aromatisch riechende Flüssigkeit. – ¹H-NMR $(20^{\circ}C, 90 \text{ MHz})$: $\delta = 1.75$ (s, 18 H, tBu), 3.11 (s, 6 H, NCH₃), 3.20 (s, 6H, NCH₃), 6.55 (br, 2H, =CH). $-{}^{11}$ B-NMR: $\delta = 43.5$. -MS (EI): m/z (%) = 250 (M⁺, 100), 193 ([M - tBu]⁺, 38), 57 (tBu⁺, 80).

Analog erhält man **5b** [aus 805 mg (1.9 mmol) **3b** und 243.4 mg (3.8 mmol) *t*BuLi in Hexan]. Ausb. 300 mg (0.83 mmol, 44%) farblose Flüssigkeit, Sdp. $103-105 \,^{\circ}\text{C}/10^{-3}$ Torr. - ¹H-NMR (20 $^{\circ}\text{C}$, 90 MHz): $\delta = 1.73$ (s, 18H, *t*Bu), 1.21 (d, 12H, ³J_{HH} = 6.8 Hz, NCCH₃), 1.33 (d, 12H, NCCH₃), 3.28 (sept, 2H, NCH), 3.66 (sept, 2H, NCH), 6.48 (br, 2H, =CH). - ¹³B-NMR: $\delta = 42.8$. - MS (EI): m/z (%) = 362 (M⁺, 87), 305 ([M - *t*Bu]⁺, 18), 57 (*t*Bu⁺, 100). - (*t*BuP)₂Li₂ wird mit 72% Ausb. (260 mg, 1.37 mmol) isoliert.

Tetracarbonyl {2,3,4,5,6- η^{5} -[1,2-di-tert-butyl-3,6-bis(dimethylamino)-1,2,3,6-tetrahydro-1,2,3,6-diphosphadiborin]}chrom (**6a**) und Tetracarbonyl {2,3,4,5,6- η^{5} -[1,2-di-tert-butyl-3,6-bis(diispropylamino)-1,2,3,6-tetrahydro-1,2,3,6-diphosphadiborin]}chrom (**6b**): Die Lösung von 440 mg (1.4 mmol) **3a** in 40 ml Petrolether (40-60 °C) wird mit 380 mg (1.47 mmol) Cr(CO)₃(MeCN)₃ 2 h unter Rückfluß erhitzt. Die dunkelgelbe Lösung wird über eine G3-Fritte filtriert, auf ca. 20 ml Gesamtvolumen eingeengt und bei -30 °C zur Kristallisation gestellt. Die ausgefallenen orangegelben Kristalle werden mehrmals aus wenig Petrolether kristallisiert: 587 mg (1.23 mmol, 88%) **6a**, bei 218 °C Zersetzung unter Grünfärbung. - MS (DCI, CH₄): m/z (%) = 476 (M⁺, 5), 448 ([M - CO]⁺, 4), 392 ([M - 3 CO]⁺, 2), 364 ([M - 4 CO]⁺, 10), 308 ([M - 4 CO -C₄H₈]⁺, 10), 57 (tBu⁺, 100), 52 (Cr⁺, 8).

6b wird durch analoge Umsetzung von 390 mg (0.92 mmol) **3b** mit 260 mg (1.00 mmol) Cr(CO)₃(MeCN)₃ mit 87% Ausb. (470 mg, 0.80 mmol) gebildet. Hellgelbe, schuppenförmige Kristalle, ab 168 °C Zersetzung (Grünfärbung). – MS (DCI, CH₄): m/z (%) = 588 (M⁺, 3), 560 ([M – CO]⁺, 2), 504 ([M – 3 CO]⁺, 2), 476 ([M – 4 CO]⁺, 9), 420 ([M – 4 CO – C₄H₈]⁺, 9), 57 (*t*Bu⁺, 100), 52 (Cr⁻, 8).

Röntgenstrukturanalyse von **3b**²⁰: Der Heterocyclus kristallisiert in der Raumgruppe *P2/c* mit den Zellparametern a = 8.928(1), b =7.478(1), c = 20.840(2) Å, $\beta = 101.02(1)^{\circ}$, V = 1366 Å³, Z = 2, $d_r = 1.022$ g cm⁻³. Die Intensitätsmessung wurde mit einem Zweikreisdiffraktometer (Mo- K_{α} -Strahlung, Graphitmonochromator, ω -scan, $6^{\circ} < 2\Theta < 60^{\circ}$, Rotationsachse: b) durchgeführt. Gemessen wurden 3993 Reflexe, von denen 2784 mit $I > 2\sigma_I$ zur Strukturbestimmung verwendet wurden. Eine Absorptionskorrektur ($\mu = 1.65$ cm⁻¹, Kristallgröße 0.4 · 0.55 · 0.07 mm) wurde durchgeführt. Die Struktur wurde mit Direkten Methoden gelöst. Alle H-Atome konnten in Differenz-Fourier-Synthesen lokalisiert werden. Die Verfeinerung (Nichtwasserstoffatome anisotrop, Wasserstoffatome isotrop) ergab R = 0.068 und $R_w = 0.078$ ($w = 1/\sigma_F^2$). Alle Berechnungen wurden mit dem Programmsystem SHELX 76²¹⁾ durchgeführt.

CAS-Registry-Nummern

2a: 109530-94-1 / 2b: 109530-92-9 / 3a: 118226-35-0 / 3b: 118246-91-6 / 4: 118226-38-3 / 5a: 118226-36-1 / 5b: 118226-37-2 / 6a: 118226-39-4 / 6b: 118207-72-0 / (tBuP)₂K₂: 66874-44-0 / (tBuP)₂Li₂: 98720-64-0 / Cr(CO)₃(MeCN)₃: 16800-46-7 / 1,2-Di-tert-butyl-1,2bis(trimethylsilyl)diphosphan: 55793-25-4

- ¹⁾ M. Drieß, H. Pritzkow, W. Siebert, Angew. Chem. 99 (1987) 789; Angew. Chem. Int. Ed. Engl. 26 (1987) 781
- ²⁾ M. Drieß, Dissertation, Universität Heidelberg, 1988
- ³ ³ ³ ³ P. Bischof, Universität Heidelberg, MNDO-Programm: W. Thiel, *QCPE* 12 (1980) 379; P. Bischof, G. Friedrich, J. Comput. Chem. 3 (1982) 486. ^{3b} T. Clark, P. v. R. Schleyer, Universität Erlangen-Nürnberg, unveröffentlicht.
- ⁴⁹ M. Drieß, H. Pritzkow, W. Siebert, Angew. Chem. **100** (1988) 410; Angew. Chem. Int. Ed. Engl. **27** (1988) 399.
- ⁵⁾ J. J. Lagowski in: Gmelin, Handbuch der anorganischen Chemie, 8. Aufl., Bd. 22, S. 321, Springer-Verlag, Berlin 1975.
- ⁶⁾ W. Siebert, R. Full, Angew. Chem. 88 (1976) 55; W. Siebert, R. Full, H. Schmidt, J. v. Seyerl, M. Halstenberg, G. Huttner, J. Organomet. Chem. 191 (1980) 15.
 ⁷⁾ H. V. R. Dias, P. P. Power, Angew. Chem. 99 (1987) 1320; Angew. Chem. 59 (1987) 1320; Angew. 59 (19
- Chem. Int. Ed. Engl. 26 (1987) 1270.

- ^{8) 8a)} P. L. Timms, J. Am. Chem. Soc. 90 (1968) 4585. ^{8b)} G. E.
- Herberich, B. Hessner, J. Organomet. Chem. 161 (1978) C36. ⁹⁾ M. Baudler, Ch. Gruner, H. Tschäbunin, J. Halm, Chem. Ber. 115 (1982) 1739; dort weitere Literatur.
- ¹⁰⁾ H. Fisch, Dissertation, Universität Heidelberg, 1986.
- ¹¹⁾ R. Köster, G. Seidel, R. Boese, B. Wrackmeyer Chem. Ber. 120 (1987) 669.
- ¹²⁾ H. Nöth, B. Wrackmeyer in: NMR Basic Principles and Progress (P. Diehl, E. Fluck, R. Kosfeld, Hrsg.), Bd. 14, Springer, Berlin 1978
- ¹³⁾ D. E. C. Corbridge in: The Structural Chemistry of Phosphorus, Elsevier, Amsterdam 1974.
- 14) M. Fehér, R. Fröhlich, K. F. Tebbe, Z. Anorg. Allg. Chem. 474 (1981) 31.
- ¹⁵⁾ R. A. Bartlett, X. Feng, P. P. Power, J. Am. Chem. Soc. 108 (1986) 6817.
- ¹⁶⁾ R. Prinz, H. Werner, Angew. Chem. 79 (1967) 63; Angew. Chem. Int. Ed. Engl. 6 (1967) 91.
- ¹⁷⁾ ^{17a)} M. Hildenbrand, H. Pritzkow, W. Siebert, Angew. Chem. 97 (1985) 769; Angew. Chem. Int. Ed. Engl. **24** (1985) 759. -1^{769} M. Hildenbrand, Dissertation, Universität Heidelberg, 1985. (CH)₂(BCl₂)₂ wurde mit Me₂N(SiMe₃) partiell symmetrisch aminiert
- ¹⁸⁾ M. Baudler, Ch. Gruner, G. Fürstenberg, B. Kloth, F. Say-kowski, U. Özer, Z. Anorg. Allg. Chem. 446 (1978) 169.
- ¹⁹⁾ D. P. Tate, W. R. Knipple, J. M. Augl, Inorg. Chem. 1 (1962) 433.
- 20) Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53448, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ²¹⁾ G. M. Sheldrick, SHELX 76, A Program for Crystal Structure Determination, Cambridge 1976.

[280/88]